Robust Global Sliding Model Control for Water-hull-propulsion Unit Interaction Systems - Part 1: System Boundary Identification

نویسندگان

  • Zhixiong Li
  • Xinping Yan
  • Li Qin
  • Kai Cheng
  • J. T. Xing
چکیده

Original scientific paper Unexpected severe hull deformation caused by the wave loads would significantly influence the dynamical behaviours of the propulsion system in large scale ships, resulting in degradation of the ship control performance. A new global sliding model control (GSMC) for marine water-hull-propulsion unit systems is proposed to obtain more accurate control performance in this paper. The GSMC was firstly employed to establish the marine propulsion control model with nonlinear uncertainties. In the GSMC model, the saturation function method is applied to eliminate chattering on the sliding surface. Then the Lyapunov stability criterion is adopted to confirm the stability of the control system. Following, for the first time, the boundary problem of the nonlinear model uncertainties were investigated quantitatively. The bounded nonlinear model uncertainties required in the proposed GSMC model, involving engine torque loss / variations, power transfer for various load conditions and shaft rotational speeds, were derived based on the experiments carried out on a marine shaft-line test-bed of the integrated propulsion system as well as a sea trial implemented for a running bulk carrier. An upper boundary of 1,85 % for the model uncertainty has been obtained, which would be introduced into the GSMC for the integrated marine propulsion system to derive the total control law realising the robust control of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Global Sliding Model Control for Water-hull-propulsion Unit Interaction Systems - Part 2: Model Validation

Original scientific paper Unexpected severe hull deformation caused by wave loads poses alignment problem to the propulsion shaft line in large scale ships, which would significantly influence the dynamical performance of the marine propulsion system. How to suppress negative disturbance imposed by the interaction between water-hull-propulsion and ensure the normal operation of the marine propu...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

A Dissipative Integral Sliding Mode Control Redesign Method

This paper develops a new method of integral sliding mode control redesign for a class of perturbed nonlinear dissipative switched systems by modifying the dissipativity-based control law that was designed for the unperturbed systems. The nominal model is considered affine with matched and unmatched perturbations. The redesigned control law includes an integral sliding-based control signal such...

متن کامل

A magnetorheological fluid damper for robust vibration control of flexible rotor-bearing systems: A comparison between sliding mode and fuzzy approaches

Squeeze Film Dampers (SFD) are commonly used for passive vibration control of rotor-bearing systems. The Magnetorheological (MR) and Electrorheological (ER) fluids in SFDs give a varying damping characteristic to the bearing that can provide active control schemes for the rotor-bearing system. A common way to model an MR bearing is implementing the Bingham plastic model. Adding this model to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015